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Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in the
elderly. Susceptibility to AD is considerably determined by genetic factors which hitherto were primarily identified using
case–control designs. Elucidating the genetic architecture of additional AD-related phenotypic traits, ideally those linked to
the underlying disease process, holds great promise in gaining deeper insights into the genetic basis of AD and in
developing better clinical prediction models. To this end, we generated genome-wide single-nucleotide polymorphism (SNP)
genotyping data in 931 participants of the European Medical Information Framework Alzheimer’s Disease Multimodal
Biomarker Discovery (EMIF-AD MBD) sample to search for novel genetic determinants of AD biomarker variability. Specifically,
we performed genome-wide association study (GWAS) analyses on 16 traits, including 14 measures derived from
quantifications of five separate amyloid-beta (Aβ) and tau-protein species in the cerebrospinal fluid (CSF). In addition to
confirming the well-established effects of apolipoprotein E (APOE) on diagnostic outcome and phenotypes related to Aβ42,
we detected novel potential signals in the zinc finger homeobox 3 (ZFHX3) for CSF-Aβ38 and CSF-Aβ40 levels, and confirmed
the previously described sex-specific association between SNPs in geminin coiled-coil domain containing (GMNC) and CSF-
tau. Utilizing the results from independent case–control AD GWAS to construct polygenic risk scores (PRS) revealed that AD
risk variants only explain a small fraction of CSF biomarker variability. In conclusion, our study represents a detailed first
account of GWAS analyses on CSF-Aβ and -tau-related traits in the EMIF-AD MBD dataset. In subsequent work, we will utilize
the genomics data generated here in GWAS of other AD-relevant clinical outcomes ascertained in this unique dataset.

Introduction
Alzheimer’s disease (AD) is a progressive and devas-

tating neurodegenerative disorder, which leads to cogni-
tive decline, loss of autonomy, dementia, and eventually
death. Neuropathologically, AD is characterized by the
accumulation of extracellular amyloid β (Aβ) peptide
deposits (“plaques”) and intracellular hyperpho-
sphorylated tau protein aggregates (“tangles”) in the
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brain1,2. Using genetic linkage analysis followed by posi-
tional cloning led to the discovery of rare mutations in
three genes encoding the amyloid-beta precursor protein
(APP) and presenilins 1 and 2 (PSEN1, PSEN2) that cause
fully penetrant monogenic forms of AD3. However, the
vast majority of patients likely suffer from a polygenic
(“sporadic”) form of AD, which is driven by numerous
genomic variants4, the identification of which are the
main aim of genome-wide association studies (GWAS).
The most strongly and most consistently associated AD

risk gene (even prior to GWAS5) is APOE, which encodes
apolipoprotein E, a cholesterol transport protein that has
been implicated in numerous amyloid-specific pathways,
including amyloid trafficking, as well as plaque clear-
ance2,6. In addition to APOE, nearly three dozen inde-
pendent loci have now been reported to be associated
with disease risk by GWAS7–9. Pathophysiologically, the
risk genes identified to date appear to predominantly act
through modulations of the immune system response,
endocytotic mechanisms, cholesterol homeostasis, and
APP catabolic processes7,8.
Despite these general advances in the field of AD

genetics, many key questions still remain to be answered.
First, even when analyzed in combination, the currently
known AD risk factors explain only a fraction of the
phenotypic variance7, and, accordingly, only have limited
applicability as early markers for disease onset and pro-
gression7,10. Second, most of the currently reported AD
susceptibility genes were identified using classic
case–control designs comparing clinically manifest
dementia-stage AD vs. control individuals, typically lack-
ing data on early-stage impairments (e.g., mild cognitive
impairment [MCI]) and clinical follow-up to ascertain
progression and eventually conversion to AD. Finally,
while some studies have investigated the correlation
between genetics and non-genetic biomarkers, this was
hitherto typically done as bivariate assessments owing to
the lack of a broad spectrum of biomarkers and imaging
data in the same individuals. To overcome at least some of
these shortcomings we generated genome-wide single-
nucleotide polymorphism (SNP) genotyping data in the
European Medical Information Framework Alzheimer’s
Disease Multimodal Biomarker Discovery (EMIF-AD
MBD) sample11. This powerful and unique dataset allows
to combine genomic data (and “-omics” data from other
domains) with preclinical biomarker levels to eventually
improve our ability for an early detection and prevention
of AD. While similar to the Alzheimer’s Disease Neuroi-
maging Initiative (ADNI) study12 in various aspects,
EMIF-AD MBD extends ADNI and scope in several
important ways, e.g., in the breadth of the biomarker
assessments as well as the availability of “-omics” data
from various different domains in the same individuals
(for more details see Bos et al.11).

In this report, we focus exclusively on the description of
the results from genome-wide association analyses using
various Aβ and tau-relevant outcomes available in EMIF-
AD MBD. Specifically, we performed GWAS and poly-
genic risk score (PRS) assessments for more than a dozen
binary and quantitative phenotypes derived from five
measures of cerebrospinal fluid (CSF) Aβ and tau proteins
in addition to using simple diagnostic status (i.e., AD,
MCI, and control). Whenever available, we compare our
findings using equivalent GWAS results from the ADNI
dataset.

Materials and methods
Sample and phenotype description
Overall, the EMIF-AD MBD dataset comprises 1221

elderly individuals (years of age: mean= 67.9, SD= 8.3)
with different cognitive diagnoses at baseline (NC= nor-
mal cognition; MCI=mild cognitive impairment; AD=
AD-type dementia). In addition, Aβ status, cognitive test
results and at least two of the following were available at
baseline for analyses in all EMIF-AD MBD individuals:
plasma (n= 1189), DNA (n= 929), magnetic resonance
imaging (MRI; n= 862), or CSF (n= 767 individuals).
Furthermore, clinical follow-up data were available for
759 individuals. The demographic information of the 16
outcome phenotypes (9 binary and 7 quantitative) of the
EMIF-AD MBD dataset utilized in this paper is sum-
marized in Table 1. Depending on the availability of the
clinical records, each phenotype has different effective
sample sizes. We categorized the phenotypes analyzed in
this study into three main categories, i.e., “diagnosis”,
“amyloid protein assessment” and “tau protein assess-
ment” (NB: the diagnostic criteria used here for AD are
not incorporating biomarker status so that some AD cases
were classified as “amyloid negative”). Details related to
sample ascertainment and phenotype/biomarker collec-
tion in EMIF-AD MBD have been described previously11

and are summarized for the relevant traits of this study in
Supplementary Table 1. Whenever available, we attemp-
ted to validate EMIF-AD MBD findings in the indepen-
dent ADNI dataset using identical or comparable
phenotypes (this was possible for the two diagnostic
groups, as well as for 6 amyloid- and 2 tau-related traits;
Table 1). The local medical ethical committee in each
participant recruitment center approved the study. Sub-
jects had provided written informed consent at the time of
inclusion in the cohort for use of data, samples and
scans11.
Replication data used in the preparation of this article

were obtained from the ADNI database (adni.loni.usc.
edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, positron emission tomography (PET),
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other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the pro-
gression of mild MCI and early AD. The ADNI
participants utilized for our analyses originate from both
ADNI1 and ADNIGo/2 and relate to those with available
whole-genome sequencing (WGS; see below) data.
Accordingly, we label the subset of ADNI participants
utilized here as “ADNI-WGS”.

DNA extraction
Our laboratory at University of Lübeck, Germany, had

access to 953 DNA samples from EMIF-AD MBD partici-
pants11 for genetic (this paper) and epigenetic (DNA
methylation profiling, m.s. in preparation) experiments. All
participants had provided written consent to these experi-
ments and institutional review board (IRB) approvals for the
utilization of the DNA samples in the context of EMIF-AD
MBD were obtained by the sample collection sites. For 805
participants, DNA was extracted locally at the collection
sites. For 148 whole-blood samples DNA extraction was
performed in our laboratory using the QIAamp® DNA
Blood Mini Kit (QIAGEN GmbH, Hilden, Germany).
Overall, this resulted in a total number of 953 DNA samples
available for subsequent processing and analysis. Quality
control (QC; by agarose gel electrophoresis, determination
of A260/280 and A260/230 ratios, and PicoGreen quanti-
fication) resulted in 936 DNA samples of sufficient quality
and quantity to attempt genome-wide SNP genotyping
using the Infinium Global Screening Array (GSA) with
Shared Custom Content (Illumina Inc.). GSA genotyping
was performed at the Institute of Clinical and Medical
Biology (UKSH, Campus-Kiel) on an iScan instrument
(Illumina, Inc) following the manufacturer’s recommenda-
tions. All 936 DNA samples passed post-experiment QC
according to the manufacturer’s instructions.

Genotype imputation and quality control
Data processing was performed from raw intensity data

(idat format) in GenomeStudio software (v2.0.4; Illumina,
Inc.). We then used PLINK software (v1.9)13 to perform
pre-imputation QC and bcftools (v1.9)14 to remove
ambiguous SNPs, flipping and swapping alleles to align to
human genome assembly GRCh37/hg19 before imputa-
tion. The QC’ed data (i.e., 931 samples and 498 589 SNPs)
were then phased using SHAPEIT2 (v2.r837)15 and
imputed locally using Minimac316 based on a pre-
compiled Haplotype Reference Consortium (HRC) refer-
ence panel (EGAD00001002729 including 39,131,578
SNPs from ~11 K individuals). Following post-imputation
QC, we retained a total of 7,778,465 autosomal SNPs with
minor allele frequency (MAF) ≥ 0.01 in 898 individuals of
European ancestry for downstream association analysis. A
full description of data processing and QC procedures is
provided in the Supplementary Material.

Classification of APOE genotypes
For all but 80 samples APOE genotype (i.e., for SNPs

rs7412 [a.k.a. as “ε2-allele”] and rs429358 [a.k.a. “ε4-
allele”]) was determined locally at the sample collection
sites. To ensure that these prior genotypes correctly align
to those resulting from genome-wide genotyping, local
APOE genotypes were compared to those either inferred
directly (i.e., rs7412) or indirectly (i.e., by imputation:
rs429358) from GSA genotyping. These comparisons
resulted in a total of 5 mismatches (~0.6%). In these 5 and
the 80 samples without prior APOE genotype information,
genotyping was determined manually in our laboratory
using TaqMan assays (ThermoFisher Scientific, Foster
City, CA) on a QuantStudio-12K-Flex system in 384-well
format. TaqMan re-genotyping confirmed all five local
genotype calls (which were used as genotypes in all sub-
sequent analyses).

Biochemical analyses of CSF biomarkers
CSF sampling and storage conditions have been

described elsewhere11. CSF concentrations of Aβ38, Aβ40
and Aβ42 were measured using the V-PLEX Plus Aβ
Peptide Panel 1 (6E10) Kit from Meso Scale Discovery
(MSD, Rockville, MD). The measurements were per-
formed at the Clinical Neurochemistry Laboratory in
Gothenburg in one round of experiments, using one batch
of kit reagents, by board-certified laboratory technicians,
who were blinded to clinical data. For phosphorylated tau
(Ptau) and total tau (Ttau), available data from the local
cohorts were used. These were derived in clinical
laboratory practice using INNOTEST ELISAs (Fujirebio,
Ghent, Belgium), as previously described17. In the absence
of CSF for new analyses of CSF Aβ proteins, we used local
INNOTEST ELISA-derived CSF Aβ42 data to allow
classifying as many subjects as possible as either
Aβ-positive or -negative (see ref. 11 and below).

GWAS and post-GWAS analyses
SNP-based association tests were performed using

logistic regression models in mach2dat18,19, for binary
traits and linear regression models in mach2qtl18,19, for
quantitative traits. Association analyses utilized
imputation-derived allele dosages as independent vari-
ables and were adjusted for sex, age at examination, and
principle components (PC) 1 to 5 (using PLINK –pca to
compute eigenvalues for up to 20 PCs; the number of PCs
was then determined visual inspection of the scree plot).
Diagnostic groups (coded as AD= 3, MCI= 2, controls= 1)
were included as additional covariates in all analyses
except for diagnostic outcome. QQ and Manhattan plots
were constructed in R version 3.3.3 (https://www.r-
project.org) using the “qqman” package20. The genomic
inflation factor was calculated in R using the “GenABEL”
package21. Statistical significance for the SNP-based
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analyses was defined as α= 5E-08, a widely used threshold
that accounts for the approximate number of independent
variants (~1M) in European populations22,23. Post-
GWAS, we used FUMA (http://fuma.ctglab.nl/)24 to
perform functional mapping and annotation of the
genome-wide association results. This included calculat-
ing gene-based association statistics using MAGMA25

using predefined sets of genes as implemented in FUMA.
Statistical significance for the gene-based analyses was
defined as α= 0.05/18720= 2.671E-06 based on the
number of genes (n= 18720) utilized for these analyses, as
suggested by FUMA24.

Polygenic risk score (PRS) analysis
PRS were calculated for each individual from the sum-

mary statistics of two partially overlapping AD
case–control GWAS, i.e., the paper by Jansen et al.7

including data from >380,000 individuals from the UK
biobank, and a 2013 GWAS meta-analysis from the
International Genomics of Alzheimer’s Project (IGAP)8.
Note that the genome-wide screening data of the IGAP
study (“stage 1”) was also included in the meta-analysis by
Jansen et al. After removal of ambiguous SNPs (A/T and
C/G) and filtering SNPs by MAF > 0.01 and imputation
quality Rsq >0.8, PLINK 1.9 software13 was used for
linkage disequilibrium (LD) pruning and scoring for a
variety of P-value thresholds (5E-08, 5E-06, 1E-04, 0.01,
0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 1.00). The resulting PRSs
were used as independent variable in the regression
models adjusting for sex, age, and PC1 to PC5 as cov-
ariates. For the phenotypes not representing the diag-
nostic outcome, we also included diagnosis as additional
covariate. For linear models, variance explained (R2) was
derived from comparing results from the full model
(including PRS and covariates) vs. the null model (linear
model with covariates only). Using a similar partitioning
approach, we estimated the percent trait variance
explained by our GWAS results for the five CSF traits. For
logistic models, we calculated Nagelkerke’s r2 using the R
package fmsb. A full description of these and all other
statistical procedures is provided in the “Supplementary
Methods”.

Validation analyses in ADNI
Whenever possible, we used whole-genome sequencing

data from the ADNI cohort to assess replicability of the
EMIF-AD MBD findings. The ADNI-WGS sample used
here comprises 808 subjects with available whole-genome
sequencing data (for more details on the generation of
these data, see http://adni.loni.usc.edu/study-design/). For
the analyses performed here, we only used unrelated
subjects of European origin (n= 751). Variant-based fil-
tering was performed based on minor allele count (MAC
> 3), missingness rate (not more than 5 %) and Hardy-

Weinberg equilibrium (P > 1E-05). We calculated princi-
pal components to account for population stratification
based on an LD-pruned subset of common variants
(MAF > 0.1). Association statistics were calculated using
PLINK v2.0 using linear and logistic regression models (as
appropriate), controlling for age, sex and four principal
components as basic covariates in our models. For the
phenotypes not representing the diagnostic outcome, we
included diagnosis as an additional covariate. For more
information on ADNI, please see Supplementary Material.

Results
GWAS on diagnostic outcomes
First, we performed GWAS for diagnostic outcomes,

i.e., all cases diagnosed with AD (n= 212) and MCI (n=
326), against normal control subjects (n= 333). Com-
paring AD vs. controls showed the expected strong signals
in the APOE region on chromosome 19q reaching
genome-wide suggestive significance in the SNP-based
analyses (best SNP rs429358: OR= 2.26, 95% CI=
1.66–3.07, P= 2.68E-07; Supplementary Fig. 1 and Sup-
plementary Table 2) and genome-wide significant asso-
ciation in the gene-based tests (APOC1 [P= 3.24E-07]
and APOE [P= 3.39E-07]; Supplementary Fig. 1B and
Supplementary Table 2). Interestingly, and in contrast to
most other previous AD GWAS (e.g., Jansen et al.7 and
Lambert et al.8), the best-associated SNP (rs429358) in
this region is the variant defining the “ε4” allele in the
commonly used “ε/2/3/4” haplotype (the “ε2” allele is
defined by rs7412). APOE was also the top-associated
region in the ADNI dataset (Supplementary Table 2), as
previously described26. Interestingly, in analyses compar-
ing MCI vs. controls, the APOE region did not emerge as
strongly associated (i.e., P-value for rs429358= 0.17;
Supplementary Fig. 2 and Supplementary Table 3).
Instead, the best-associated SNP was rs153308 (OR=
0.51, 95% CI= 0.39–0.67, P= 1.25E-06; Supplementary
Fig. 2A, Supplementary Table 3), located in an intergenic
region on chromosome 5q13.3. However, neither this nor
any of the other variants showing P-values <1E-05 showed
any evidence of association in the ADNI dataset, thus they
may—at least in part—not reflect genuine association
signals.

GWAS on dichotomous “amyloid classification”
In the remainder of our analyses we focus on AD-

relevant CSF biomarker data as phenotypic outcomes of
our GWAS analyses (see Table 1 for an overview of all
traits analyzed). These analyses included a dichotomous
“amyloid classification” (normal/abnormal) variable,
representing a combination of CSF Aβ42/40 ratio, local
CSF-Aβ42, and the standardized uptake value ratio
(SUVR) on an amyloid PET scan (see methods section on
“amyloid classification” in Bos et al.11 for more details).
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Using this amyloid variable (available for n= 871 indivi-
duals, of which n= 455 were classified as “abnormal” and
n= 416 as “normal”) across all diagnostic groups, we
observed multiple genome-wide significant signals in the
APOE region on chromosome 19 (Fig. 1). Similar to the
GWAS on diagnostic outcome, the strongest association
was observed with the APOE “ε4” allele (i.e., SNP
rs429358: OR= 5.66, 95% CI= 4.09−7.84, P= 1.95E-25;
Fig. 1A and Supplementary Table 4), which was also very
strong in equivalent analyses in the ADNI dataset (P=
4.15E-22). Despite the consistency of the APOE findings,
none of the other suggestive signals outside the APOE
region replicated in ADNI (Supplementary Table 4). As
expected, gene-based tests using MAGMA highlighted
APOE (and neighboring loci) as the most significant

gene(s) associated with the “amyloid classification” vari-
able (P= 1.13E-18, Fig. 1B and Supplementary Table 4).
In addition, a second locus emerged at genome-wide
significance in the gene-based analyses, i.e., fermitin
family homolog 2 (FERMT2) (P= 1.03E-06) located on
chromosome 14q22.1. While this gene was originally
reported to represent an AD risk locus8, this finding was
not replicated in the much larger GWAS by Jansen et al.7.
Furthermore, gene-based tests in ADNI did not reveal
evidence for association between markers in FERMT2 and
the “amyloid classification” phenotype (P= 0.23), sug-
gesting that this gene is at best marginally involved in
determining variance of this trait. Additional analyses
using the “amyloid classification” variable limited to MCI
and control individuals revealed a similar picture as in the

Fig. 1 GWAS results using amyloid status in the EMIF-AD MBD dataset.Manhattan plots of A SNP level and B gene-level genome-wide association
results with the “amyloid classification” variable across all diagnostic groups (n= 871). All plots include gene assignments made with FUMA. Dotted red
lines represent the threshold for genome-wide significance, i.e., α= 5.0E-08 for SNP-based (A) and α= 2.671E-06 for gene-based (B) analyses.
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full dataset (see Supplementary Tables 5 and 6, respec-
tively), i.e., the strongest association signals were observed
for APOE (all replicated in equivalent analyses in ADNI).
In addition, we identified a few suggestive non-APOE
signals on other chromosomes, albeit none of these
showed evidence for independent replication in ADNI.

GWAS on additional dichotomous and continuous CSF
amyloid variables
Overall, there were a total of two binary (“Central_CS-

F_ratiodich” and “Local_AB42_Abnormal”) and five
quantitative (“AB_Zscore”, “Central_CSF_AB38”, “Cen-
tral_CSF_AB40”, “log_Central_CSF_AB42” and “log_-
Central_CSF_AB4240ratio”; see Table 1) CSF-Aβ

phenotypes available that were used as outcome variables
in the GWAS. With the exception of “CSF-Aβ38” and
“CSF-Aβ40” all showed strong and highly significant
association with markers in the APOE region but no
better than suggestive (P < 1E-05) signals in the remaining
genome (see Supplementary Figs. 3–7 and Supplementary
Tables 7–11). None of the non-APOE, suggestive signals
replicated in the ADNI dataset for phenotypes with
available data. GWAS results on “CSF-Aβ38” (Fig. 2,
Supplementary Fig. 8 and Supplementary Table 12) and
“CSF-Aβ40” (Supplementary Fig. 9 and Supplementary
Table 13) showed highly similar GWAS results owing to
the—well-established27—high correlation between both
markers, which we also observed in this dataset (Pearson’s

Fig. 2 GWAS results using CSF-Aβ38 in the EMIF-AD MBD dataset. Manhattan plots of A gene-level genome-wide association results with CSF-
Aβ38 levels across all diagnostic groups (n= 675), B regional association results zoomed into a 450 kb region surrounding the ZFHX3 gene on
chromosome 16q22. All plots include gene assignments and linkage disequilibrium estimates made with FUMA. Dotted red line represents the
threshold for genome-wide significance (α= 2.671E-06) for the gene-based analyses.
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r2= 0.96, P-value < 2.2E-16 across all samples with avail-
able data). The most noteworthy finding emerging from
these analyses was genome-wide significant association
between CSF-Aβ40 and markers in the gene encoding
zinc finger homeobox 3 (ZFHX3) in gene-based analyses
(gene-based P-value = 7.48E-08; best SNP P-value=
7.29E-08; Supplementary Fig. 9 and Supplementary Table
13; similar results were obtained with CSF-Aβ38, Fig. 2).
Despite the highly significant and consistent association
between CSF-Aβ40 and CSF-Aβ38 levels and ZFHX3,
this finding was not replicated in ADNI (gene-based
P-value= 0.77; Supplementary Table 13). Genome-wide
significant (P < 5E-08) and suggestive (P < 5E-06) SNPs
explained 29-32% of the phenotypic variance in our
dataset (Supplementary Table 14). However, we note that
this number likely overestimates the true variance
explained as GWAS and genome partitioning were per-
formed in the same dataset.

GWAS on dichotomous and continuous CSF tau variables
Similar to the GWAS analyses for CSF Aβ measures,

there were several dichotomous and continuous measures
of CSF tau available in the EMIF-AD MBD dataset (see
Table 1, Supplementary Figs. 10–13, Supplementary
Tables 15–18). Using CSF-Ttau levels as z-scored con-
tinuous outcome we identified genome-wide significant
association with markers in geminin coiled-coil domain
containing (GMNC) on chromosome 3q28 in gene-based
analyses (P= 1.61E-06; Supplementary Fig. 11B, Supple-
mentary Table 16). In the SNP-based analyses, markers in
this gene showed genome-wide suggestive P-values ran-
ging between 4.3E-06 and 9.5E-06 (Supplementary Table
16). These results showed marginal evidence for associa-
tion in the ADNI cohort on the SNP level (for rs6444469
with P-value= 0.09), but not on the gene-level (P-value=
0.59; Supplementary Table 16). Interestingly, association
between markers in GMNC and CSF-Ttau levels were
previously described28. A follow-up study to the original
report provided evidence for sex-specific differences at
this locus (rs1393060 proximal to GMNC and in strong
LD with rs6444469 [r2= 1]: P-value= 4.57E-10 in females
compared to P-value= 0.03 in males), suggesting stronger
effects in females29. In EMIF-AD MBD, we also observed
a stronger association in females for GMNC at the gene
and SNP level, respectively (gene: P-value= 4.09E-06 [in
females] vs. P-value= 0.08 [in males]; SNP [for
rs6444469]: P-value= 1.47E-04 [in females] vs. P-value=
8.91E-03 [in males]), hence, providing independent
replication of the previous report. Similarly, the associa-
tion results for rs6444469 and CSF-Ttau in ADNI were
more pronounced in females (P-value= 0.013) than males
(P-value= 0.93). The other available CSF tau measure in
our GWAS was CSF-Ptau, which is known to strongly
correlate with CSF-Ttau levels30, a correlation, which we

also observe in our data (Pearson r2= 0.87, P-value <
2.2E-16). Owing to this phenotypic correlation, the
GWAS results for both variables also look quite similar, as
expected (Supplementary Fig. 13B and Supplementary
Table 18), and replicate the sex-specific difference.
Genome-wide significant (P < 5E-08) and suggestive (P <
5E-06) SNPs explained about 28–34% of the phenotypic
variance in our dataset (Supplementary Table 14). How-
ever, we note that this number likely overestimates the
true variance explained as GWAS and genome parti-
tioning were performed in the same dataset.

Polygenic risk score (PRS) analyses on all outcome traits
In addition to testing all above-mentioned traits for

SNPs and genes in the context of genome-wide analyses,
we also computed association statistics with aggregated
variant data in the form of PRS using AD case–control
results from Lambert et al.8 and Jansen et al.7. The aim
was to assess the degree at which established AD-
associated markers also show association with the “AD-
related” (endo-) phenotypes analyzed here. Although a
considerable amount of sample overlap exists across the
two AD risk GWAS (i.e., both use the “stage I” GWAS
data from the IGAP sample in their discovery phase), both
studies use different analysis paradigms and different
replication cohorts. Given that the final effective sample
size used in Jansen et al. is nearly ten-times larger than
that in Lambert, we hypothesized that the results and,
accordingly PRS, derived from the larger study are more
“precise” and will, therefore, show stronger association
and explain more of the trait variance analyzed here. PRS-
based results are summarized in Table 2, while full results
can be found in Supplementary Table 19 (for PRS from
Jansen et al.7) and 20 (for PRS from IGAP8). Overall, we
observed significant PRS-based associations with many,
but not all, traits analyzed in the EMIF-AD MBD dataset.
For both PRS models, the best-associated trait was a
diagnosis of AD and all measures involving CSF-Aβ42
levels. In contrast, no noteworthy associations were
observed with CSF-Aβ38 and CSF-Aβ40 levels and, per-
haps more interesting, not with either of the two available
CSF-tau measures (CSF-Ttau and CSF-Ptau). Comparing
the “performance” of both PRS against each other
revealed that—against our expectation—the IGAP-based
results tended to show the stronger statistical support (i.e.,
smaller P-values) and explained slightly more of the
phenotypic variance (i.e., showed higher r2) than the PRS
derived from more recent and larger GWAS by Jansen
et al. (Supplementary Table 19 vs. 20). The only exception
being the case–control analyses on AD status, where the
Jansen PRS outperformed that from IGAP (i.e., r2=
4.35%, P-value= 4.03E-06 vs. r2= 2.98%, P-value=
1.07E-04, respectively). Interestingly, the association of
AD-based PRS with risk for MCI was minor in both

Hong et al. Translational Psychiatry          (2020) 10:403 Page 8 of 12



Ta
b
le

2
Su

m
m
ar
y
of

p
ol
yg

en
ic

ri
sk

sc
or
e
(P
R
S)

an
al
ys
es

us
in
g
tw

o
P-
va

lu
e
th
re
sh

ol
d
s
an

d
tw

o
d
if
fe
re
n
t
G
W
A
S
d
at
as
et
s
w
it
h
an

d
w
it
h
ou

t
m
ar
ke

rs
in

th
e
A
PO

E
re
g
io
n
.

PR
S
co

ns
tr
uc

te
d
b
as
ed

on
G
W
A
S
b
y
Ja
ns
en

et
al
.7

PR
S
co

ns
tr
uc

te
d
b
as
ed

on
G
W
A
S
b
y
IG
A
P,

20
13

In
cl
ud

in
g
A
PO

E
Ex
cl
ud

in
g
A
PO

E
In
cl
ud

in
g
A
PO

E
Ex
cl
ud

in
g
A
PO

E

S1
(P

<
5E

-8
)

S5
(<

0.
05

)
S1

(P
<
5E

-8
)

S5
(<

0.
05

)
S1

(P
<
5E

-8
)

S5
(<

0.
05

)
S1

(P
<
5E

-8
)

S5
(<

0.
05

)

Ph
en

ot
yp

e
r2

P-
va

lu
e

r2
P-
va

lu
e

r2
P-
va

lu
e

r2
P-
va

lu
e

r2
P-
va
lu
e

r2
P-
va

lu
e

r2
P-
va

lu
e

r2
P-
va
lu
e

A
D

3.
09
%

8E
-0
5

2.
89
%

0.
00
02

1.
22
%

0.
01
26

0.
99
%

0.
02
44

2.
98

%
0.
00

01
1.
69
%

0.
00
34

0.
78

%
0.
04

43
0.
10
%

0.
47
45

M
C
I

0.
12
%

0.
37
67

0.
77
%

0.
02
49

0.
07
%

0.
48
94

0.
61
%

0.
04
49

0.
51
%

0.
06
82

0.
13
%

0.
35
37

0.
49
%

0.
07
43

0.
00
%

0.
87
64

A
M
YL
O
ID
st
at
us

1.
38
%

0.
00
04

1.
01
%

0.
00
25

0.
38
%

0.
06
43

0.
04
%

0.
55
99

3.
82
%

9E
-0
9

2.
95
%

3E
-0
7

1.
09

%
0.
00

18
0.
34
%

0.
07
66

A
m
yl
oi
d.
M
C
I

4.
59
%

0.
00
08

5.
82
%

0.
00
02

1.
33
%

0.
06
84

0.
87
%

0.
13
94

12
.5
4%

1E
-0
7

7.
45
%

2E
-0
5

4.
63

%
0.
00

08
0.
82
%

0.
15
13

A
m
yl
oi
d.
N
C

0.
83
%

0.
16
37

0.
23
%

0.
46
57

0.
20
%

0.
49
28

0.
01
%

0.
87
86

2.
45
%

0.
01
74

5.
10
%

0.
00
08

0.
24
%

0.
45
92

1.
28
%

0.
08
66

A
B_

Zs
co
re

1.
20
%

0.
00
03

0.
80
%

0.
00
31

0.
27
%

0.
08
71

0.
01
%

0.
76
83

2.
61
%

7E
-0
8

3.
08
%

4E
-0
9

0.
39

%
0.
03

82
0.
38
%

0.
04

C
en

tr
al
_C

SF
_r
at
io
di
ch

3.
86

%
2E

-0
6

1.
94
%

0.
00
07

1.
49

%
0.
00

29
0.
10
%

0.
44
14

5.
87

%
9E

-0
9

3.
52
%

6E
-0
6

1.
58

%
0.
00

22
0.
22
%

0.
24
39

Lo
ca
l_
A
B4
2_
A
bn

or
m
al

3.
68

%
4E

-0
6

1.
13
%

0.
00
98

1.
65

%
0.
00

19
0.
02
%

0.
72
87

3.
40

%
1E

-0
5

1.
66
%

0.
00
18

0.
94

%
0.
01

84
0.
01
%

0.
78
73

C
en

tr
al
_C

SF
_A

B3
8

0.
21
%

0.
22
73

0.
00
%

0.
85
87

0.
32
%

0.
13
05

0.
01
%

0.
78
38

0.
00
%

0.
88
16

0.
28
%

0.
16
14

0.
03
%

0.
64
16

0.
33
%

0.
12
79

C
en

tr
al
_C

SF
_A

B4
0

0.
24
%

0.
18
05

0.
01
%

0.
79
74

0.
28
%

0.
15
14

0.
05
%

0.
52
98

0.
05
%

0.
54
18

0.
44
%

0.
07
18

0.
07
%

0.
48
74

0.
36
%

0.
10
6

lo
g_

C
en

tr
al
_C

SF
_A

B4
24
0r
at
io

2.
06
%

4E
-0
5

1.
68
%

0.
00
02

0.
49
%

0.
04
53

0.
07
%

0.
44
28

3.
74

%
3E

-0
8

2.
55
%

5E
-0
6

0.
56

%
0.
03

23
0.
05
%

0.
53
24

lo
g_

C
en

tr
al
_C

SF
_A

B4
2

1.
52
%

0.
00
05

0.
52
%

0.
04
45

0.
56

%
0.
03

73
0.
01
%

0.
82
97

2.
31
%

2E
-0
5

2.
17
%

4E
-0
5

0.
53

%
0.
04

25
0.
25
%

0.
16
05

Lo
ca
l_
PT
A
U
_A

bn
or
m
al

0.
31
%

0.
16
02

0.
03
%

0.
66
2

0.
06
%

0.
53
86

0.
01
%

0.
81
48

0.
69

%
0.
03

47
0.
38
%

0.
11
92

0.
19
%

0.
26
97

0.
09
%

0.
44
24

Lo
ca
l_
TT
A
U
_A

bn
or
m
al

0.
93

%
0.
01

07
0.
01
%

0.
75
05

0.
56

%
0.
04

65
0.
12
%

0.
36
25

0.
82

%
0.
01

66
0.
27
%

0.
16
44

0.
17
%

0.
26
7

0.
04
%

0.
57
71

Pt
au
_A

SS
A
Y_
Zs
co
re

0.
34
%

0.
09
09

0.
00
%

0.
98
33

0.
09
%

0.
39
22

0.
05
%

0.
51
91

0.
37
%

0.
08
06

0.
08
%

0.
42
58

0.
01
%

0.
77
55

0.
01
%

0.
82
37

Tt
au
_A

SS
A
Y_

Zs
co
re

0.
51

%
0.
03

2
0.
03
%

0.
60
82

0.
23
%

0.
15
29

0.
00
%

0.
96
66

0.
09
%

0.
35
66

0.
11
%

0.
32
69

0.
03
%

0.
58
11

0.
00
%

0.
86
76

Ita
lic
iz
ed

va
lu
es

=
no

m
in
al
ly

si
gn

ifi
ca
nt

as
so
ci
at
io
n.

r2
=
va
ria

nc
e
ex
pl
ai
ne

d;
bo

ld
fo
nt

=
la
rg
es
t
r2

(=
m
os
t
va
ria

nc
e
ex
pl
ai
ne

d)
fo
r
tr
ai
t
in

qu
es
tio

n.
A
fu
ll
lis
tin

g
of

re
su
lts

fr
om

th
es
e
PR

S
an

al
ys
es

ca
n
be

fo
un

d
in

Su
pp

le
m
en

ta
ry

rig
ht
ha

nd
co
lu
m
ns

of
Ta
bl
e
2
an

d
bo

tt
om

pa
rt
of

Su
pp

le
m
en

ta
ry
Ta
bl
e
19

(f
or

Ja
ns
en

et
al
.G

W
A
S)

an
d
Su

pp
le
m
en

ta
ry

Ta
bl
e
20

(f
or

IG
A
P
G
W
A
S)
.

Hong et al. Translational Psychiatry          (2020) 10:403 Page 9 of 12



models (r2= 0.83%, P-value= 0.02, and r2= 0.65%, P-
value= 0.039, for Jansen and IGAP, respectively).
To investigate the contribution of markers in the APOE

region, we repeated all analyses excluding variants within 1
MB of APOE (chr19:45409039-45412650; right-hand col-
umns of Table 2 and affected were the analyses on AD
(strongest reduction in bottom part of Supplementary
Tables 19 and 20). As expected, removal of APOE region
markers from the PRS decreased the variance explained for
most of the traits analyzed here, albeit to varying degrees.
Most affected were the analyses on AD (strongest reduction
in r2= 73.8% in analyses excluding APOE effects vs. the full
model including APOE in IGAP) and essentially all CSF-
Aβ42 related measures (strongest reduction in r2= 88.9%
for trait “AB_Zscore” in IGAP) for both PRS models. Less
affected by the removal of APOE were the analyses of CSF-
tau species (strongest reduction in r2= 29.0% for CSF-Ttau
in non-APOE vs. APOE models).

Discussion
This is the first GWAS utilizing part of the wide col-

lection of AD-relevant phenotypes and biomarkers avail-
able in the EMIF-AD MBD dataset. The phenotypes
analyzed here related either to clinical diagnosis (i.e., AD
or MCI) or to levels of CSF biomarkers revolving around
various biochemical species of amyloid or tau proteins.
While GWAS results have already been reported for some
of the biomarkers analyzed here (e.g., in ADNI), ours are
the first to combine genomic and biomarker data in the
newly established EMIF-AD MBD dataset. The main
findings of our study can be summarized in the following
five points: (1) the most prominent genetic signals in
analyses of either diagnostic outcome or phenotypes
related to CSF-Aβ42 were observed with markers in or
near APOE, which is in good agreement with equivalent
analyses in ADNI and other datasets; (2) our analyses
identified one novel association in analyses of CSF-Aβ38
and CSF-Aβ40 levels and DNA sequence variants in
ZFHX3 (a.k.a. ATBF1 [AT-motif binding factor 1]),
although these signals were not replicated in the ADNI
dataset; (3) using CSF-tau species (i.e., Ttau and Ptau), we
confirmed the previously described association with SNPs
in GMNC, including the recently reported effect mod-
ification by sex at this locus; (4) PRS analyses revealed that
AD risk SNPs are mostly associated with phenotypes
related to CSF-Aβ42 but not CSF-Aβ38, CSF-Aβ40, and
most notably CSF-tau; (5) exclusion of APOE from the
PRS analyses suggest that non-APOE AD GWAS SNPs
explain at most 2.5% of the phenotypic variance under-
lying a diagnosis of AD in this dataset. Collectively, these
results implicate that the genetic architecture underlying
many traits relevant for AD research in EMIF-AD MBD
compare well to other datasets of European descent

paving the way for future genomic discoveries with
additional phenotypes available in this unique cohort11.
Despite these promising first results, our study is

potentially confined by a number of possible limitations:
First and foremost, despite the breadth of available phe-
notype data, the overall sample size of the EMIF-AD MBD
dataset is comparatively small and, as a result, may not be
adequately powered to detect genetic variants exerting
smaller effects. To a degree, this limitation is alleviated by
the fact that many available outcome phenotypes are of a
quantitative nature, which are more powerful than ana-
lyses of dichotomous traits (e.g., disease risk). Second,
many of the phenotypes available in EMIF-AD MBD are
not currently ascertained in other, independent datasets
(such as ADNI), making independent replication of any
novel findings difficult. This situation can be expected to
improve somewhat once the phenotypic breadth in ADNI
and other cohorts is extended. Still, until independent
replication is available, novel GWAS findings from EMIF-
AD MBD must be interpreted with caution. This includes
the putative association between CSF-Aβ38 and CSF-
Aβ40 and markers in ZFHX3, which were highly sig-
nificant and consistent in EMIF-AD MBD but not repli-
cated in ADNI. Until more independent data on these
outcome traits are available, the ZFHX3 association
should be considered “provisional”. In this context it is
comforting, however, that many well-established genetics
findings (such as the association between APOE and
measures of CSF-Aβ or GMNC and CSF-tau) were
reproduced in EMIF-AD MBD. Third, while the genome-
wide SNP genotype data was generated in one run of
consecutive experiments in one laboratory, the same is
not true for the phenotype measurements, which were
performed locally in each of the 11 participating sites. In
some instances, the compiled phenotype data are not
based on the same biochemical assays across sites for
some variables, e.g., measurements of tau protein. While
the EMIF-AD MBD phenotype team went to great lengths
to alleviate this potential problem by normalizing vari-
ables for each center (see Bos et al.11 for more details), the
possibility of artefactual findings owing to phenotypic
heterogeneity remains. Finally, as described in the overall
cohort description manuscript, the EMIF-AD MBD
dataset is not designed to be “representative” of the gen-
eral population but was assembled with the aim to achieve
approximately equal proportions of amyloid+ vs. amy-
loid- individuals in all three diagnostic subgroups. While
this ascertainment strategy does not invalidate our GWAS
results per se, they may not be generalizable to the
population as a whole. However, this limitation may affect
any study with clinically ascertained participants and,
thus, applies to most previously published GWAS in the
field, including those performed in ADNI.
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In conclusion, our first-wave of GWAS analyses in the
EMIF-AD MBD dataset provides a first important step in
a series of additional genome-wide and epigenome-wide
(using DNA methylation profiles) association analyses in
this valuable and unique cohort.
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